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Skin microcirculation plays an important role in several diseases including chronic venous insufficiency
and diabetes. Magnetic resonance (MR) has the potential to provide quantitative information and a better
penetration depth compared with other non-invasive methods such as laser Doppler flowmetry or optical
coherence tomography. The continuous progress in hardware resulting in higher sensitivity must be cou-
pled with advances in data acquisition schemes. In this article, we first introduce a physical model for
quantifying skin microcirculation using diffusion-weighted MR (DWMR) based on an effective dispersion
model for skin leading to a q-space model of the DWMR complex signal, and then design the correspond-
ing robust optimal experiments. The resulting robust optimal DWMR protocols improve the worst-case
quality of parameter estimates using nonlinear least squares optimization by exploiting available a priori
knowledge of model parameters. Hence, our approach optimizes the gradient strengths and directions
used in DWMR experiments to robustly minimize the size of the parameter estimation error with respect
to model parameter uncertainty. Numerical evaluations are presented to demonstrate the effectiveness of
our approach as compared to conventional DWMR protocols.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Skin can be thought of as the first line of defense of the body
against pathogens found in the environment. From outermost to
innermost layer, the skin possesses three primary layers, as shown
in Fig. 1: the epidermis (with a thickness ranging from 0.05 mm on
the eyelids to 1.5 mm on the palms and soles), the dermis (from
0.3 mm on the eyelids and 3.0 mm on the back), and the hypoder-
mis. Nourishment and waste removal in the dermis are accom-
plished through the blood vessels present in the dermis, which
also provide the same service to the cells in the deepest layers of
the epidermis (Stratum basale) via diffusion. These blood vessels
are composed of capillaries, arterioles, venules, and arteriovenous
anastomosis (shunting vessels). The former are used for nutrition,
while perfusion through the latter three allows for temperature
regulation and feeding and draining of the capillary network [1].
Diseases such as chronic venous insufficiency [2] and diabetes [3]
impair skin perfusion, which may lead to decubitus ulcer forma-
tions and necrosis. In wound healing, vascular supply to the wound
ll rights reserved.
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is essential and relies on neovascularization or angiogenesis [4],
and means of quantitatively characterizing perfusion is crucial
for prognosis.

In vivo skin studies using nuclear magnetic resonance (NMR)
spectroscopy and imaging offer several advantages over optical
techniques such as laser Doppler flowmetry (LDF, see [5,1]) and
optical coherence tomography (OCT, see [6–9]). Namely, there is
no limitation of the depth of the field-of-view (FOV), and, while
LDF data compound effects from flow, density of light scatterers,
and depth-of FOV and are reported in arbitrary units, NMR proto-
cols can be quantitative [10]. Wright et al. [11] provide a review of
non-invasive methods for evaluating the skin’s microcirculation,
wherein specific advantages and disadvantages for all available
methods are presented. In particular, LDF suffers from large day-
to-day variance (on the order of 20%). Wright et al. discuss two
additional experimental techniques used to measure skin microcir-
culation: laser Doppler perfusion imaging and photoplethysmogra-
phy, however the former is scantly used and requires more
validation studies and the latter suffers from the same shortcom-
ings as LDF. Finally, this review points out that ‘‘the use of MRI
as a dermatological tool for inspecting and quantifying the skin is
only considered to be at a preliminary stage”.

For skin studies, MRI suffers from low signal-to-noise ratios
(SNR) due to the relatively low relaxation times compared to other
tissues: T1 values for the different skin layers varies from 135 to
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Fig. 1. The distribution of the blood vessels in the skin of the sole of the foot (reproduction of a lithograph plate from Gray’s Anatomy). Corium is an alternate term for dermis.
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360 ms [12], the T2 of the dermis has been measured at 28 ms [13],
while a T�2 of 9.8 ms for 90% of the dermis signal has been reported
[14]. Recent advances in hardware can help overcome low SNR
limitations, such as dedicated surface receiver coil [8], high-
temperature superconducting (HTS) receiver surface coils [15,16],
high-field spectrometers [17,18] and single-sided NMR probes
[19,20]. Recent in vivo MR skin studies have made significant pro-
gress in increasing the spatial resolution for imaging as well as
localized spectroscopy. For imaging, the voxel has gone from
50 � 150 � 1000 lm3 at 2 T [12] to 100 � 130 � 500 lm3 at 1.5 T
[21], and 40 � 80 � 900 lm3 [15] with a HTS coil at 1.5 T. More-
over, a voxel of 59 � 59 � 59 lm3 with a SNR of 20 has been
achieved for in vivo microimaging of a mouse with a 12-mm HTS
surface coil in a standard clinical 1.5 T whole-body scanner [16].
For spectroscopy, a volume of interest of 0.14 � 10 � 10 mm3 has
been successfully used to characterize the biochemical contents
of the different skin layers, and empirically correlate relaxation
times (T1 and T2) to healthy and diseased skin [8].

Diffusion-weighted magnetic resonance (DWMR) protocols
have the potential and flexibility to provide quantitative measure-
ments of blood flow without the use of an exogenous contrast
agent. DWMR protocols for either spectroscopy or imaging involve
the sampling of q-space (the Fourier reciprocal space of spin dis-
placements) via the choice of magnetic gradient strengths and
directions [22–26]. When combined with an imaging pulse se-
quence which acquires data in k-space (the Fourier reciprocal
space of spin locations), DWMR imaging consists of acquiring a ser-
ies of images, each of which corresponds to one sampling location
in q-space. In DWMR, a data model for the signal in q-space is often
used, and the corresponding inverse problem is solved to estimate
the model parameters of interest designed to characterize the
physical problem under study (e.g., DTI [27], ADTI [28], CHARMED
[29], QUAQ [30,31]). Examples include diffusion and perfusion
measurements in living tissues [32], and estimation of the vascular
volume fraction and mean microflow velocity in canine myocar-
dium [33]. From a pulse sequence programming point-of-view,
stimulated-echo pulse sequences [34,33] or single-shot techniques
with time-efficient interleaved multi-slice acquisition [18] may be
used for DWMR to avoid an excessive drop of signal due to T�2
relaxation. While apparent diffusion coefficients have been mea-
sured at a voxel size of 95 � 95 � 1000 lm3 via DWMR in in vitro
animal skin tissues in a 2 T clinical whole-body MRI system [35],
microimaging at 21 T has been performed on hairless rat skin with
spatial resolutions down to 19.5 � 19.5 � 300 lm3 [17] and
15 � 15 � 40 lm3 [18], and several NMR modalities–including
DWMR imaging–were evaluated for their usefulness in distin-
guishing between different skin appendages (stratum corneum,
epidermis, reticular dermis, papillary dermis, hair follicle and seba-
ceous gland).

Besides the experimental noise in the acquired DWMR data, an-
other source of error comes from the way q-space is sampled (i.e.,
the DWMR or q-space sampling protocol) and how noise propa-
gates through the inverse problem into the model parameter esti-
mates. Therefore, a key piece of the design of an experiment is to
optimize the DWMR protocol (i.e., encoding gradient strengths
and directions). Several schemes to pick gradient direction
schemes for DTI experiments are reviewed in [36], such as numer-
ically optimized schemes (minimum force, minimum energy, min-
imum condition number), heuristic schemes (orthogonal encoding)
and geometric schemes (icosahedral polyhedra). Jones et al. [37]
proposed that in absence of any prior knowledge of the tensor to
be estimated (or the imaged structure), gradients can be uniformly
distributed in 3-D gradient space by minimizing Coulomb’s force
(minimum force-MF) between unit charges on a sphere where
charges represent the gradient directions. Instead of optimizing
the diffusion gradient direction schemes, optimization can also
be on the selection of diffusion gradient strength, diffusion pulse
duration, diffusion pulse interval and number of diffusion gradient
directions, such as in [38]. Brihuega-Moreno et al. [39] used
Cramer-Rao lower bounds (CRLB [40,41]) for the optimal selection
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of b-values for apparent diffusion coefficient (ADC) measurements
by minimizing the CRLB of the ADC with respect to the b-values.
Similarly, Cercignani and Alexander [42] applied the CRLB in quan-
titative magnetization transfer (MT) MRI where they further opti-
mized the MT-MRI acquisition scheme to be robust within the
range of MT model parameters observed in the brain. The afore-
mentioned methods assume Gaussian noise model in the definition
of CRLB. A more appropriate noise model for the magnitude MR
image data used in DTI or ADC measurements is the Rician noise
model [43,44] and an application of the CRLB has been demon-
strated by Alexander in [38] for the optimization of acquisition
parameters using the CHARMED diffusion model [29].

In this paper, we propose an optimization framework for the ro-
bust optimal design of DWMR protocols using CRLB for the exper-
imental study of skin microcirculation to complement ongoing
hardware advances. Compared to standard optimization [10], the
robustness of our DWMR protocols is achieved by incorporating
the uncertainty in the a priori information, such that the DWMR
protocols are optimized against the worst-case scenario.
2. Methods

2.1. DWMR model for skin microcirculation

DWMR protocols via pulsed field gradient MR result in the acqui-
sition of a normalized echo attenuation, Aðq;DÞ 2 C, which corre-
sponds to the Fourier transform of the probability density function
of the spin displacements [22,45]. A(q,D) is a function of the spatial
frequency of the spin displacements, q :¼ cgd=2p 2 R3, and D,
where d and D are the duration of and time between the pulsed field
gradients g 2 R3, respectively [22]. Experimentally, A(q,D) is
obtained by dividing the measured echo A*(q,D) with diffusion-
encoding gradients turned on (q – 0) by the echo A�0 :¼ A�ð0;DÞ
obtained with diffusion-encoding gradients turned off (q = 0) [45]:

Aðq;DÞ :¼ A�ðq;DÞ
A�0

: ð1Þ

In order to obtain a DWMR model for skin microcirculation, an
effective physical model for microcirculation in the skin must first
be constructed. To do so, the standard advection–diffusion equation
that characterizes blood flow in the skin can be volume-averaged
and linearized [46]:

@C
@t
þ V � $C ¼ Dr2C; ð2Þ

which introduces a spatially averaged velocity field, V: = [VxVyVz]T,
and a symmetric dispersion tensor, D 2 R3�3, which reflects on both
the advection and diffusion processes, as well as on the geometry,
and may be time-dependent [47]. The model parameters, V and D,
correspond to an effective dispersion model for skin at the chosen
voxel scale. It can be shown [48] that the response to an impulse
function, C(x,y,z, 0) = C0d(x,y,z, 0) after a time t is given by

Cðx; tÞ ¼ C0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4pÞ3t3ðdetDÞ

q exp �ðx� VtÞTD�1ðx� VtÞ
4t

" #
: ð3Þ

For an impulse initially located at a location x0, x in (3) needs to be
replaced by the vector x � x0, which can be thought of as a displace-
ment vector. Then after normalization, (3) provides the probability
density function of the spin displacements, which corresponds to
the inverse Fourier transform of the DWMR signal A(q,D) [45].

Let us now consider specific DWMR protocols for skin microcir-
culation. The imaging voxel can be taken such that z is the direc-
tion perpendicular to the skin surface (and surface coil). As noted
in [11], the blood vessels in the deep horizontal plexus run parallel
to the surface of the skin, prompting us to assume that the z-axis is
one of the principle axis of the dispersion tensor. As a result, dis-
persion along the z direction is decoupled from dispersion in the
(x,y)-plane, wherein the dispersion along the x- and y-axes is cou-
pled (i.e., in general, Dxy – 0 or the principal axes of the dispersion
tensor in the (x,y)-plane are rotated from the x- and y-axes by a
non-zero angle). Then, with q: = [qx,qy,qz]T, our effective model
for A(q,D) is obtained by taking the inverse Fourier transform of
(3), leading to

Aðq;DÞ ¼ exp �4p2 D� d
3

� �
Dxxq2

x þ Dyyq2
y þ 2Dxyqxqy

� �� �
� exp i2pDðVxqx þ VyqyÞ

	 

� exp �4p2 D� d

3

� �
Dzzq2

z þ i2pDVzqz

� �
: ð4Þ

This paper focuses on setting up the framework for developing a
skin microcirculation model and the robust design optimization of
DWMR protocols used for its implementation. Therefore, a simpler
model is more appropriate, such that the optimization results can
be more readily interpreted and provide a greater insight than if a
more complex effective dispersion model were used. However,
our framework can accommodate more complex DWMR signal
models without any insurmountable difficulties by modifying (4)
and using for instance a full dispersion tensor and/or modeling mul-
tiple compartments [10], based on a more complex effective disper-
sion model for skin at the chosen voxel scale.

2.2. Experimental design

On clinical scanners, because of the limited gradient strength
capabilities, the values for the duration (d) and separation (D) of
the pulsed gradients are quite constrained. The maximum desired
value for q is typically achieved by using the maximum allowed
gradient strength, which then fixes d. The value for D is then typ-
ically chosen in order to minimize the duration of the echo time so
as to minimize T2 relaxation and maximize the SNR. Ideally, one
would use a pulse sequence, wherein the diffusion-encoding gradi-
ents can be set to zero without modifying the timing of the pulse
sequence, and in particular shortening the echo time, such that
by taking the ratio A�ðq;DÞ=A�0, the T2 weighting cancels out. Should
such a DWMR pulse sequence not be available on the MRI scanner
used and the echo time vary for the data acquired, one would need
to take T2 effects into account as done in [38]. An upper bound for
q: = kqk is imposed to limit the signal attenuation due to diffusion,
such that the commonly used b value remains below bmax =
1000 s mm�2, with

b :¼ 4p2q2 D� d
3

� �
: ð5Þ

Moreover, for DWMR, collecting data on a small number of spheres
in q-space is usually more practical and efficient experimentally
[10,49,27]. One reason is that the software on clinical scanners of-
ten optimizes the MRI pulse sequence parameters for a given value
of q. It is then generally preferable to collect one reference image
per value of q, such that when using (1), the signal A�0 is collected
for exactly the same experimental parameters as A*(q,D), only the
diffusion-encoding gradients turned off.

Noise in MR data is modelled as independent Gaussian noise
with zero mean in the two quadrature detection channels
[43,44]. The sensitivity to noise will determine the required SNR
in experimental DWMR data, and thus, ultimately, the voxel size.
This numerical analysis of our DWMR model will therefore allow
the proper design of MRI protocols and avoid costly trial-and-error
repetitions of MRI experiments. The model (4) can be written
as A(qm,hw), where hH 2 Rp is the true parameter vector (p = 7)
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corresponding to the true values for the parameters of our DWMR
model for skin microcirculation, namely Dxx, Dyy, Dxy, Dzz, Vx, Vy, and
Vz. Additionally, the q-space sampling protocol is defined as

Q M :¼ fqmg
M
m¼1; ð6Þ

with M P p. Then, since A�0 is typically quite large compared to
A*(q,D), the Gaussian noise contained in A�0 is assumed to be negli-
gible compared to that in A*(q,D), which is consistent with pub-
lished noise propagation studies (see for example [38,39]), such
that the corresponding set of measurements can be written as:bAm :¼ Aðqm; h

HÞ þ em; m ¼ 1; . . . ;M; ð7Þ

where em is a complex-valued white noise random variable with the
following properties: its real and imaginary parts are jointly normal
and independent, each with zero mean and variance r2, such that
em has variance 2r2. The origin of this complex-valued white noise
is from the asymptotic normal distribution of the Fourier transform
of white noise [50,51]. It may also come from the quantization and
electronic noise of the data acquisition system.

The inverse problem then consists in estimating the parameters
related to skin microcirculation from our DWMR model (4) given
the measurements (7). Using nonlinear least squares (NLS), the
parameter estimates ĥM 2 Rp are obtained by minimizing the resid-
ual sum of squares:

ĥM ¼ arg min
h2Rp

SMðhÞ; SMðhÞ :¼
XM

m¼1

bAm � Aðqm; hÞ
��� ���2 ð8Þ

where j�j denotes the magnitude operator on a complex number.
The objective of this manuscript is to numerically find the optimal
q-space sampling protocol for the DWMR model (4), subject to real-
istic experimental constraints, such that the uncertainty in the
parameter estimates ĥM is minimized.

2.3. Experimental design optimization

The Cramer-Rao Lower Bound (CRLB) provides the minimal
achievable estimation error variances by any unbiased estimator
[40], i.e., for the given noise model in (7), the estimation error vari-
ances resulting from the NLS estimation of the physical parameters
of interest according to (8) cannot be smaller than those prescribed
by the CRLB. Therefore, it serves as a good criterion to optimize the
q-space sampling protocol for our DWMR model for skin microcir-
culation. In particular, by the Cramer-Rao theorem [40], the covari-
ance matrix W of any unbiased estimator ĥM is lower bounded by
the CRLB, or the inverse of the Fisher Information Matrix
FIM(hw,QM) [41]:

W � FIMðhH;QMÞ�1 ¼ r2R�1
2Mðh

HÞ
M

¼: CRLB ð9Þ

with

R2M :¼ 1
M

XM

m¼1

Re A0ðqm; h
HÞA0ðqm;D; h

HÞ�
� 

; ð10Þ

where the positive semi-definiteness of a matrix A � B is denoted by
A � B � 0 or equivalently A � B. Re{T} is the (element-wise) real part
of matrix T and A0ðqm; h

HÞ :¼ @Aðqm; hÞ=@hjh¼hH . Under some regular-
ity conditions [41,52], (9) becomes an equality as M ?1 (asymp-
totic normality), such that the right-hand-side of (9) can be used
to predict the covariance matrix of the estimates. Hence, this sug-
gests the formulation of an experimental design optimization that
aims at decreasing the size of the CRLB in order to improve the qual-
ity of the estimation of unknown parameters.

In this work, the problem is to find an optimal configuration of
M measurement points, Qopt, such that the size of the confidence
region of the parameter estimates and/or the estimation error vari-
ances are reduced. Following the discussion in Section 2.2, we re-
strict the sampling vectors qm to be on a single sphere of radius
q < qmax: = bmax/[4p2(D � d/3)] and centered at the origin, which
we denote S � R3, resulting in QM 2SM � R3M . There are then
(2M + 1) variables describing QM to optimize: 2M spherical angles
to define the orientation of the sampling vectors qm and one vari-
able for their magnitude q. This parameterization is consistent with
standard sampling protocols used for DWMR imaging [37].

We consider two optimization criteria: D-optimality [40] in
which the determinant of the FIM is maximized, and A-optimality
[40,53] in which the trace of the CRLB is minimized. Formally, we
solve the following optimization problems:

Q ‘
opt :¼ arg max

QM2SM
J‘ðhH;Q MÞ ‘ 2 fD;Ag; ð11Þ

where JD is defined for D-optimality,

JDðhH;Q MÞ :¼ det
1
r2

XM

m¼1

Re A0ðqm; h
HÞA0ðqm; h

HÞ�
� " #

; ð12Þ

and JA is defined for A-optimality

JAðhH;Q MÞ :¼ �trace
r2R�1

2Mðh
HÞ

M

" #
: ð13Þ
Remark 1. The minimum of the D-optimal design is invariant to
any transformation of the parameter vector h. However, this
measure does not allow to place a hard-bound on each estimation
error variance of parameters. Conversely, A-optimality is not
invariant to any transformation of h, and provides a hard-bound
on every estimation error variance [53]. In this paper, the units of
the model parameters are scaled, so that the terms in JA(hw,QM)
have consistent units [54].

These D- and A-optimal design problems are solved numerically
by using a gradient-based method from the optimization toolbox
in MatLab (The MathWorks, Natick, MA) for a given hw. In practice,
the a priori value h0 of hw may be used instead of the unknown true
value for hw [41]. Alternatively, an a priori estimate of hw may be
available from preliminary data or known range of possible values.
The following section deals with optimizing the experimental
parameters to take into account such an approximate knowledge
of hw.

2.4. Robust experimental design optimization

Consider the model in (7) with hw 2Kh, where the true param-
eter vector hw is contained in an uncertain parameter set Kh, i.e., Kh

is an available a priori knowledge. Then our robust experimental
design problem with respect to the uncertain parameter set can
be formulated as follows [53]: find QM in order to maximize the
worst case of J‘(hw,QM), given in (11)–(13), i.e., solve the following
robust optimization problems:

Q ‘
rob ¼ arg max

QM2SM
min
h2Kh

J‘ðh;Q MÞ ‘ 2 fD;Ag: ð14Þ

In order to deal with the optimization problems in (14), let us intro-
duce the uncertain parameter set Kh containing the true parameter
vector value hw more specifically as a Cartesian product of intervals

Kh :¼ Pp
i¼1½h

L
i ; h

H
i � ¼ ½h

L
1; h

H
1 � � ½h

L
2; h

H
2 � � � � � � ½h

L
p; h

H
p �; ð15Þ

where hL
i and hH

i are the lower and upper bounds for each model
parameter hi, respectively. The robust optimization problems de-
scribed by (14) can be solved by using a trajectory-following gradi-
ent algorithm for max–min optimization [55]. Supposing that the
max–min solution exists for (14) and that the limits on the decision



Table 1
Comparison of the NLS estimates obtained with conventional (QP), D-optimal ðQ D

optÞ
and A-optimal ðQ A

optÞ q-space sampling protocols containing M = 12 sampling
locations for r = 5% noise. The computed values result from MC simulations
(K = 20 000). The values for Dxx, Dyy, Dzz, Dxy, and Dsurr are expressed in 10�3 mm2 s�1.
The values for Vx, Vy and Vz are expressed in mm s�1.

hw Mean values

QP QD
opt QA

opt

Dxx 2.400 2.402 2.402 2.402
Dyy 2.800 2.801 2.799 2.804
Dzz 2.500 2.499 2.501 2.501
Dxy �0.346 �0.346 �0.347 �0.349
Vx 0.300 0.299 0.300 0.300
Vy 0.400 0.400 0.400 0.400
Vz 0.100 0.100 0.100 0.100

  0.5

  1

  1.5

π/2

−π/2

π 0
φ (rad)

ψ (rad)

QD
opt

QD
rob (α)

QD
rob (Λ

θ
)

QP

Fig. 2. Polar plot of the unit gradient directions used in the pure D-optimal ðQD
optÞ,

robust D-optimal ðQD
robðaÞ and QD

robðKhÞ corresponding to the cases when
(a � a0) 2 [�p/9,p/9] and hw 2Kh, respectively) and conventional (QP) q-space
sampling protocols.
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variable are suitable such that it is unique, the trajectory then con-
verges to the unique stationary solution for (14), i.e., limt?1h(t) = h*,
and limt!1QMðtÞ ¼ Q �M [55]. However, in general, the solution can
be non-unique and can be located at the boundary of Kh �SM .

To avoid local minima and achieve a fast convergence rate for
the trajectory f½hðtÞ;Q MðtÞ� 2 Kh �SM ; t 2 Ng, where t is a fictitious
discrete time variable, the following iterative algorithm is imple-
mented. At each step of the algorithm, the change from t to t + 1
along each coordinate in Kh �SM is done by introducing:

hminðtÞ :¼ arg min
h2Kh

J‘ðh;Q MðtÞÞ; ð16Þ

which is solved by sampling Kh at discrete locations, computing J‘ at
these locations for the current configuration Q, and then picking the
value for hmin that minimizes the sampled values for J‘. Then, at the
next iteration,

hðt þ 1Þ ¼ hminðtÞ; ð17Þ

and, with � > 0 is a small positive number,

qmðt þ 1Þ ¼ qmðtÞ þ �
@J‘
@qm
ðhminðtÞ;QMðtÞÞ: ð18Þ

Thus, hmin satisfies that @J‘(hmin,QM) /@hi 	 0 and @2J‘ðhmin;QMÞ=
@h2

i > 0, or that hi ¼ hL
i or hH

i , for all i = 1, . . . ,p. To counteract the ef-
fect of the discrete sampling, when hi–hL

i or hH
i , a better estimate for

the location of hmin
i is obtained by parabolic fitting. The algorithm

(17),(18) stops when hi(t + 1) � hi(t) 	 0 for i = 1, . . . ,p and
qm(t + 1) � qm(t) 	 0 for m = 1, . . . ,M for all future time; we then ap-
ply a gradient search algorithm starting from the states obtained
from the previous step.

Our numerical results reveal that solving the robust optimiza-
tion using our proposed combined algorithm represented by (17)
and (18) is much more efficient in terms of computational time
and local critical points than using a trajectory-following gradient
algorithm [55] alone.

3. Results

The NLS estimator for our DWMR model (4) to quantify skin
microcirculation is evaluated by analysing the covariance matrices
from the NLS estimation using Monte-Carlo (MC) simulations with
K realizations and a noise level r = 5%. The performance with other
noise levels can be obtained from (9), which indicates that for a given
q-space sampling protocol the standard deviations of the NLS esti-
mates scale linearly with the noise levelr. The parameter estimation
is done using the Levenberg–Marquardt algorithm [56] with an ini-
tial guess equal to a vector with a 10% deviation from the true param-
eter hw. The number K of MC realizations is chosen such that the
predicted standard deviations converge towards their predicted
values, which is achieved for K = 20000. A set of realistic experimen-
tal parameters is chosen (see Table 1): D = 3 s, d = 0.03 s, and the val-
ues of the coefficients of the dispersion tensor are chosen by
selecting three eigenvalues (here, {3.0,2.2,2.5} � 10�3 mm2 s�1)
corresponding to the x-, y- and z-axis and performing a rotation of
angle a0 = p/3 about the z-axis.

3.1. Performance of our D- and A-optimal experimental protocols

Three sets of q-space sampling protocols (M = 12) identified by
sets of locations on one sphere are compared: our D-optimal ðQ D

optÞ
and A-optimal ðQ A

optÞ q-space sampling protocols obtained from
(11)–(13), and a conventional sampling protocol denoted by QP

based on Papadakis’ scheme 12 [49], which was used experimen-
tally in [33] for instance. For QP, the gradient magnitude defining
the sphere was optimized. For our DWMR model (4) and the cho-
sen hw, the optimal radius of the sphere for both the D-optimal and
A-optimal q-space sampling protocols (QD
opt and Q A

opt, respectively)
was determined to be q 	 17.9 mm�1, corresponding to
b 	 342 s mm�2, while for the conventional sampling protocol
(QP) was determined to be q 	 17.1 mm�1, corresponding to
b 	 312 s mm�2.

The unit gradient directions corresponding to the D-optimal,
A-optimal and conventional q-space sampling protocols are shown
in Figs. 2 and 3. It is quite apparent that both optimal sampling pro-
tocols have the particularity of having one sampling location at each
pole and ten sampling locations around the equator. Given the sym-
metry with respect to the (x,y)-plane (i.e., the plane of the equator)
of the chosen model, it was to be expected. This observation provides
an intrinsic verification of our optimization procedure.

The three q-space sampling protocols are compared via Tables 1
and 2, which report on the mean values and standard deviations,
respectively, of the NLS estimates as well as the analytical predic-
tions of the latter using the asymptotic normality of the NLS esti-
mates [41,52]. Table 1 reveals that the NLS estimator is unbiased,
since the mean values of the NLS estimates of the model parame-
ters match hw. Moreover, Table 2 demonstrates that the covariance
matrix of the NLS estimates agrees very well with the CRLB. There-
fore, the variances of the NLS estimates can be easily predicted
using (9). The standard deviations of the NLS estimates resulting
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Fig. 3. Polar plot of the unit gradient directions used in the pure A-optimal ðQA
optÞ,

robust A-optimal ðQA
robðaÞ and QA

robðKhÞ corresponding to the cases when
(a � a0) 2 [�p/9,p/9] and hw 2Kh, respectively) and conventional (QP) q-space
sampling protocols.

Table 2
Comparison of the standard deviations obtained with conventional (QP), D-optimal
ðQ D

optÞ and A-optimal ðQ A
optÞ q-space sampling protocols containing M = 12 sampling

locations for r = 5% noise. The computed values result from MC simulations
(K = 20000). The units used are the same as the ones used for Table 1.

hw Standard deviations for r = 5%

QP QD
opt QA

opt

MC Predicted MC Predicted MC Predicted

Dxx 2.400 0.246 0.244 0.183 0.185 0.177 0.179
Dyy 2.800 0.264 0.265 0.213 0.212 0.195 0.193
Dzz 2.500 0.249 0.249 0.248 0.248 0.244 0.244
Dxy �0.346 0.200 0.200 0.165 0.164 0.175 0.175
Vx 0.300 0.017 0.017 0.015 0.015 0.015 0.015
Vy 0.400 0.018 0.018 0.016 0.016 0.016 0.016
Vz 0.100 0.017 0.017 0.024 0.024 0.024 0.024
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from Q D
opt and Q A

opt are smaller than those from QP with improve-
ments up to 33%, except for Vz, for which the standard deviation in-
creases slightly.

3.2. Performance of our robust D-optimal and A-optimal sampling
protocols

Robust optimization of the q-space sampling protocol using
D- and A-optimality is conducted following (11)–(17). To that
end, an uncertainty set must be defined (e.g., an interval Kh defined
as a product of uncertainty intervals for each of the model param-
eters as in (15) in Section 2.4). In a first illustrative example, only
one physical parameter is varied within an uncertainty set, such
that the optimization function can be plotted vs. this parameter.
To preserve some physical meaning as well as generality, we chose
to define our uncertainty as a function of the rotation angle a about
the z-axis of our physical model, namely a 2 [a0�p/9,a0 + p/9],
such that five of our model parameters (i.e., Dxx, Dxy, Dyy, Vx and
Vy) are allowed to vary, while the other two (Dzz and Vz) are con-
stant. The model parameters used for the pure optimization corre-
spond to a = a0 = p/3.

The unit gradient directions corresponding to the resulting
robust D-optimal and A-optimal q-space sampling protocols are
plotted and compared to the conventional, pure D-optimal and
A-optimal q-space sampling protocols in Figs. 2 and 3, respectively,
while q 	 17.9 mm�1 as for the pure optimal protocols. One
observes a slight shift of the positions of the sampling locations
of the robust optimal sampling protocols ðQ D

robðaÞ and QA
robðaÞ,

respectively) with respect to those of the pure optimal protocols
ðQ D

opt and QA
opt, respectively) around the equator, in order to reduce

the uncertainty of the worst-case estimation within the range
a 2 [a0�p/9,a0 + p/9].

In order to assess the performance of robust optimization, Table
3 reports the worst values of the normalized determinant of the
FIM, JD=J0

D, and the normalized trace of the CRLB, �JA=J0
A obtained

when a spans the interval [a0 � p/9,a0 + p/9] for the D-optimal
ðQ D

optÞ, robust D-optimal ðQ D
robÞ, A-optimal ðQA

optÞ, and robust A-opti-
mal ðQ A

robÞ q-space sampling protocols. Additionally, MC simula-
tions are run to compute the standard deviations (see Table 4)
for the worst cases defined in Table 3 for each of the optimized
sampling protocols. Moreover, JD=J0

D is plotted as a function of
the rotation angle a in Fig. 4, while Fig. 5 illustrates the variation
of the normalized trace of the CRLB, �JA=J0

A, as a function of a. In
both cases, the figures at the top show the optimization function
for the whole range of a 2 [0,p], while the figures at the bottom
provide a zoom on the robust optimization region, a 2 [a0 � p/
9,a0 + p/9], for the pure (subscript ‘‘opt”) and robust (subscript
‘‘rob”) optimization sampling protocols obtained with both
D- and A-optimality. The solid lines represent the results for pure
optimization, while the dashed lines are for robust optimization.
The results for pure and robust D-optimal protocols are in black,
the ones for pure and robust A-optimal protocols are in dark gray,
and the ones for the conventional sampling protocol are in light
gray. J0

‘ (‘ 2 {D,A}) are chosen such that J‘=J0
‘ ¼ 1 when a = a0. For

D-optimality, JD=J0
D is maximum, while �JA=J0

A is minimum for
A-optimality.

It is noteworthy to compare the performance of the A-optimal
sampling protocols in terms of the normalized determinant of
the FIM (i.e., the optimization function used for D-optimality) with
that of the D-optimal sampling protocols in Fig. 4. Similarly, Fig. 5
allows for comparison of the performance of the D-optimal sam-
pling protocols in terms of the normalized trace of the CRLB (i.e.,
the optimization function used for A-optimality) with that of the
A-optimal sampling protocols. Clearly, the A-optimal sampling
protocols do not perform as well as the D-optimal sampling proto-
cols in terms of JD=J0

D, and vice versa in terms of �JA=J0
A. Nonethe-

less, both D- and A-optimal sampling protocols significantly
outperform the conventional sampling protocol QP : JD=J0

D > 0:89
for our optimized sampling protocols compared to JD=J0

D < 0:34
for QP, and �JA=J0

A < 1:025 vs. >1.27 for QP. Moreover, robust opti-
mization is effective in improving the worst-case scenario com-
pared to the pure optimization. As shown in Figs. 4 and 5, if a
takes the nominal value a0, then the pure optimization achieves
the best performance. However, the robust optimization always
produces the best worst-case performance over the uncertain
parameter set a 2 [a0 � p/9,a0 + p/9].

A second illustrative example is used for verification of the
trends observed in the first example. An uncertainty interval Kh

is defined according to (15) as the product of the intervals spanned
by each of the model parameters as the angle a is varied from
a0 � p/9 to a0 + p/9], and new robust optimal q-space sampling
protocols are computed. The unit gradient directions correspond-
ing to these new robust D-optimal and A-optimal q-space sampling
protocols are plotted and compared to the previously mentioned q-
space sampling protocols in Figs. 2 and 3, respectively, while
q 	 17.9 mm�1 as for the previous optimal protocols. One observes
a slight shift of the positions of the sampling locations of the robust
optimal sampling protocols ðQD

robðKhÞ and QA
robðKhÞ, respectively)

with respect to those of the pure optimal protocols ðQD
opt and



Table 3
Comparison of the normalized determinant of the FIM, JD=J0

D, and the normalized trace of the CRLB, �JA=J0
A for the D-optimal ðQ D

optÞ, robust D-optimal ðQ D
robÞ, A-optimal ðQ A

optÞ, and
robust A-optimal ðQ A

robÞ q-space sampling protocols at their respective worst cases with (a � a0) 2 [ � p/9,p/9].

Optimization functions for the worst cases (a � a0 2 [ � p/9,p/9])

QD
opt QD

rob QA
opt QA

rob

JD=J0
D

0.9905 – 0.9915 – 0.9015 – 0.8937 –

�JA=J0
A

– 1.0247 – 1.0229 – 1.0023 – 1.0018

Table 4
Comparison of the standard deviations obtained with the D-optimal ðQ D

optÞ, robust D-optimal ðQ D
robÞ, A-optimal ðQ A

optÞ, and robust A-optimal ðQ A
robÞ q-space sampling protocols at

their respective worst cases (within a 2 [a0 � p/9,a0 + p/9]). The MC parameters and units used are the same as the ones used for Table 1. Table 3 lists the values of the
optimization functions corresponding to the worst cases.

Standard deviations for the worst cases

QD
opt QD

rob QA
opt QA

rob

MC Predicted MC Predicted MC Predicted MC Predicted

Dxx 0.178 0.178 0.179 0.180 0.172 0.172 0.172 0.173
Dyy 0.220 0.220 0.219 0.218 0.203 0.202 0.199 0.200
Dzz 0.249 0.248 0.247 0.248 0.243 0.244 0.244 0.244
Dxy 0.163 0.162 0.162 0.161 0.174 0.173 0.174 0.174
Vx 0.014 0.014 0.014 0.014 0.015 0.015 0.015 0.015
Vy 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017
Vz 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.024
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Fig. 4. Plot of the normalized determinant of the FIM, JD=J0
D as a function of the

rotation angle a about the z-axis of the physical model for the pure and robust
D-optimal ðQD

opt and QD
rob, respectively) and A-optimal ðQA

opt and QA
rob, respectively)

q-space sampling protocols using a = a0 = p/3 and for the conventional sampling
protocol QP: (a) a 2 [0,p]; (b) larger view for a 2 [a0 � p/9,a0 + p/9]. For
D-optimality, JD=J0

D is maximized and equal to 1 at a = a0.
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A-optimality, �JA=J0

A is minimized and equal to 1 at a = a0.
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Table 5
Comparison of the normalized determinant of the FIM, JD=J0

D, and the normalized trace of the CRLB, �JA=J0
A for the D-optimal ðQ D

optÞ, robust D-optimal ðQD
robÞ, A-optimal ðQ A

optÞ, and
robust A-optimal ðQ A

robÞ q-space sampling protocols at their respective worst cases with hw 2Kh.

Optimization functions for the worst cases (hw 2Kh)

QD
opt QD

rob QA
opt QA

rob

JD=J0
D

0.013 – 0.017 – 0.008 – 0.02 –

�JA=J0
A

– 2.011 – 2.053 – 2.136 – 1.9509
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Q A
opt, respectively) and the previous robust optimal protocols
ðQD

robðaÞ and QA
robðaÞ, respectively) around the equator, in order to

reduce the uncertainty of the worst-case estimation within the
new range hw 2Kh.

As for the previous example, the worst values of the normalized
determinant of the FIM and the normalized trace of the CRLB for
our previous pure D- and A-optimal q-space sampling protocols
and our new robust D- and A-optimal q-space sampling protocols
are tabulated in Table 5. These results confirm the success of our
algorithm in that the uncertainty in the parameter estimates in
the worst cases for our robust protocols is lower as per our optimi-
zation functions than that for our pure optimal protocols. The only
difference with our previous example is that the optimization
functions for the worst cases here are farther from optimality
(unity), which can be explained by the larger uncertainty set Kh

(a 5-D hypervolume vs. a 1-D segment). MC simulations were also
conducted with an outcome in complete accordance with that of
our previous example.

3.3. Discussion

The NLS estimator for our DWMR model (4) is not biased, unlike
typical estimation problems encountered in MRI, wherein signal
amplitudes as opposed to complex signals are processed, thereby
resulting in a noise in the signal amplitude actually following a Ri-
cian distribution with non-zero mean [43,44,57] instead of a
Gaussian distribution. In particular, data models used for DWMR
often use the amplitude of the DWMR data while neglecting the
phase of the data, such that the corresponding NLS estimators
are biased. However, other than recently in [38], studies on model
analysis and optimization [49,37,58,28] typically assume Gaussian
noise for simplicity because Rician noise is only available as an
integral formula, which does not lends itself to straightforward
analytical or numerical investigations, such that the resulting
q-space sampling protocols do not exactly reproduce the designed
outcome. By taking into account both the amplitude and the phase
of the signal, i.e., a complex signal with superimposed complex
Gaussian noise, our analysis obviates these problems and the use
of a CRLB with Gaussian noise is more appropriate. While robust
optimization has been implemented for MT-MRI in [42], wherein
a CRLB with Gaussian noise is used for magnitude MR images,
we use robust optimization in the context of designing DWMR pro-
tocols, thereby directly incorporating the uncertainty in the a priori
knowledge of our model parameters, in conjunction with a physi-
cal model of the complex MR signal for skin microcirculation,
thereby allowing the use of a CRLB with Gaussian noise.

Figs. 4 and 5 clearly demonstrate the superior performance of our
D-optimal and A-optimal sampling protocols compared to a conven-
tional protocol. While the differences between pure and robust opti-
mization results are not overwhelming for our particular DWMR
model and the specific model parameters chosen here, the example
provided in Section 3.2 adequately illustrates the difference be-
tween the two approaches and the importance of robust optimiza-
tion. Since the numerical method used to achieve robust
optimization outlined in Section 2.4 does not require much more
computational time as that used for pure optimization, one should
always attempt to follow this approach provided an uncertain
parameter set (i.e., model parameters with known bounds). It is
noted that, in practice, as long as the model is derived from physical
principles or preliminary data is available, such uncertain parameter
sets can be easily determined. In doing so, it is recommended to ob-
tain the smallest uncertainty set for the robust optimization in order
to achieve its worst-case performance at a level that is comparable
to the one achieved by the pure optimization with the true parame-
ter values. This can be easily seen from the fact that, if the true
parameter values hw are given such that hw 2K1 �K2 (i.e., K1 repre-
sent a smaller uncertainty set for the true parameters compared to
K2), then J1 ¼maxQ minh2K1 Jðh;QÞP J2 ¼maxQ minh2K2 Jðh;QÞ (i.e.,
the robust DWMR protocol based on the smaller uncertainty set
K1 can only perform better than the robust DWMR protocol based
on the larger uncertainty set K2).

4. Conclusions

A general experimental design framework allowing the investi-
gation of skin microcirculation by DWMR is proposed based on a
physical model of the DWMR complex signal for skin microcircula-
tion. Starting from an effective dispersion model of skin resulting
from a linearized volume-averaged advection-diffusion equation,
an expression for the complex DWMR signal is obtained, and de-
pends on experimental parameters as well as model parameters
which represent physical quantities of interest. Then, the q-space
sampling schemes used to obtain the DWMR data are optimized
based on D- and A-optimality in order to counteract the inherently
low SNR caused by the short relaxation times of skin tissues and
reduce the uncertainty in the NLS parameter estimates. A robust
optimization method is also presented in order to further optimize
the q-space sampling protocols when a priori knowledge of an
uncertainty set for the model parameters is available. Our models
and our optimized vs. conventional q-space sampling schemes are
validated via MC simulations. Our numerical results reveal the vast
improvement in the model parameter estimation by using our
optimal sampling schemes compared to a conventional sampling
scheme. Moreover, our robust optimal sampling schemes achieve
the goal of minimizing the worst case of the uncertainty in param-
eter estimation within an uncertainty set for the model parame-
ters, which is of crucial interest when model parameters can take
any value within a prescribed set. This manuscript is thus meant
as a tool to design quantitative DWMR protocols for skin microcir-
culation studies (e.g., to investigate chronic venous insufficiency or
diabetes) and as a complement to ongoing hardware advances. The
future of this work is to experimentally implement our modeling
and sampling protocols in combination with using high-end hard-
ware and conduct in vivo skin microcirculation studies.

References

[1] A. Humeau, W. Steenbergen, H. Nilsson, T. Strömberg, Laser Doppler perfusion
monitoring and imaging: novel approaches, Med. Biol. Eng. Comput. 45 (2007)
421–435.

[2] W. Duran, P.J. Pappas, G.W. Schmid-Schönbein, Microcirculatory inflammation
in chronic venous insufficiency: current status and future directions,
Microcirculation 7 (2000) S49–S58.



254 J. Choi, L.G. Raguin / Journal of Magnetic Resonance 206 (2010) 246–254
[3] R.L. Greenman, S. Panasyuk, X. Wang, T.E. Lyons, T. Dinh, L. Longoria, J.M.
Giurini, J. Freeman, L. Khaodhiar, A. Veves, Early changes in the skin
microcirculation and muscle metabolism of the diabetic foot, Lancet 366
(2005) 1711–1717.

[4] L.J. Gould, M. Leong, J. Sonstein, S. Wilson, Optimization and validation of an
ischemic wound model, Wound Rep. Reg. 13 (2005) 576–582.

[5] M. Larsson, T. Strömberg, Toward a velocity-resolved microvascular blood flow
measure by decomposition of the laser Doppler spectrum, J. Biomed. Opt. 11
(2006) 014024.

[6] J. Welzel, Optical coherence tomography in dermatology: a review, Skin Res.
Technol. 7 (2001) 1–9.

[7] P.J. Caspers, G.W. Lucassen, G.J. Puppels, Combined in vivo confocal Raman
spectroscopy and confocal microscopy of human skin, Biophys. J. 85 (2003)
572–580.

[8] B. Querleux, Magnetic resonance imaging and spectroscopy of skin and
subcutis, J. Cosmet. Dermatol. 3 (2004) 156–161.

[9] C. Suihko, L.D. Swindle, S.G. Thomas, J. Serup, Fluorescence fibre–optic confocal
microscopy of skin in vivo: microscope and fluorophores, Skin Res. Technol. 11
(2005) 254–267.

[10] G. Cordier, J. Choi, L.G. Raguin, Evaluation of three inverse problem models to
quantify skin microcirculation using diffusion-weighted MRI, J. Phys.: Conf.
Series 135 (2008) 012031.

[11] C.I. Wright, C.I. Kroner, R. Draijer, Non-invasive methods and stimuli for
evaluating the skin’s microcirculation, J. Pharmacol. Toxicol. 54 (2006) 1–25.

[12] F. Mirrashed, J.C. Sharp, In vivo morphological characterisation of skin by MRI
micro-imaging methods, Skin Res. Technol. 10 (2004) 149–160.

[13] S. Richard, B. Querleux, J. Bittoun, I. Idly-Peretti, O. Jolivet, E. Cermakova, J.L.
Lévêque, In vivo proton relaxation times analysis of the skin layers by
magnetic resonance imaging, J. Invest. Dermatol. 97 (1991) 120–125.

[14] H.K. Song, F.W. Wehrli, J. Ma, In vivo MR microscopy of the human skin, MRM
37 (1997) 185–191.

[15] J. Ginefri, L. Darrasse, P. Crozat, High-temperature superconducting surface
coil for in vivo microimaging of the human skin, MRM 45 (2001) 376–382.

[16] M. Poirier-Quinot, J. Ginefri, O. Girard, P. Robert, L. Darrasse, Performance of a
miniature high-temperature superconducting (HTS) surface coil for in vivo
microimaging of the mouse in a standard 1.5 T clinical whole-body scanner,
MRM 60 (2008) 917–927.

[17] R. Sharma, S. Fulzele, K. Shetty, M. Sachdeva, B.R. Locke, 21 Tesla micro-MRI of
rat skin, in: Proc. Int. Soc. Magn. Reson. Med., 2006, p. 2001.

[18] R. Sharma, Microimaging of hairless rat skin by magnetic resonance at
900 MHz, Magn. Reson. Imaging 27 (2009) 240–255.

[19] J. Perlo, F. Casanova, B. Blümich, Profiles with microscopic resolution by single-
sided nmr, JMR 176 (2005) 64–70.

[20] B. Blümich, J. Perlo, F. Casanova, Mobile single-sided nmr, Prog. Nucl. Magn.
Reson. Spectrosc. 52 (2008) 197–269.

[21] J. Weis, G. Aström, B. Vinnars, A. Wanders, H. Ahlström, Chemical-shift micro-
imaging of subcutaneous lesions, Magn. Reson. Mater. Phys. 18 (2005) 59–62.

[22] E.O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to study
anisotropic, restricted diffusion and flow, J. Chem. Phys. 43 (1965) 3597–3603.

[23] P.T. Callaghan, Y. Xia, Velocity and diffusion imaging in dynamic NMR
microscopy, J. Magn. Reson. 91 (1991) 326–352.

[24] P.J. Basser, J. Matiello, D. Le Bihan, MR diffusion tensor spectroscopy and
imaging, Biophys. J. 66 (1994) 259–267.

[25] D. Le Bihan, Diffusion and Perfusion Magnetic Resonance Imaging, Raven Press,
New York, 1995.

[26] P.J. Basser, Relationships between diffusion tensor and q-space MRI, Magn.
Reson. Med. 47 (2002) 392–397.

[27] P.J. Basser, D.K. Jones, Diffusion-tensor MRI: theory, experimental design and
data analysis – a technical review, NMR Biomed. 15 (2002) 456–467.

[28] S. Majumdar, D.C. Zhu, S.S. Udpa, L.G. Raguin, Optimization of diffusion
encoding gradients in axisymmetric diffusion tensor imaging using a priori
structure information, in: Proc. Int. Soc. Magn. Reson. Med., 2009, p. 3513.

[29] Y. Assaf, R.Z. Freidlin, G.K. Rohde, P.J. Basser, New modeling and experimental
framework to characterize hindered and restricted water diffusion in brain
white matter, Magn. Reson. Med. 52 (2004) 965–978.

[30] L.G. Raguin, D. Hernando, D.C. Karampinos, L. Ciobanu, B.P. Sutton, Z.-P. Liang,
J.G. Georgiadis, Quantitative analysis of q-space MRI data, in: J. Hozman, P.
Kneppo (Eds.), IFMBE Proc. 3rd European Medical and Biological Engineering
Conference, vol. 11, 2005.
[31] L.G. Raguin, D. Hernando, D.C. Karampinos, L. Ciobanu, B.P. Sutton, Z.-P. Liang,
J.G. Georgiadis, Quantitative analysis of q-space MRI data: theoretical and
experimental validation, in: Proc. Int. Soc. Magn. Reson. Med., 2006, p. 2729.

[32] D. Le Bihan, E. Breton, D. Lallemand, M.L. Aubin, J. Vignaud, M. Laval-Jeantet,
Separation of diffusion and perfusion in intra voxel incoherent motion MR
imaging, Radiology 168 (1988) 497–505.

[33] V. Callot, E. Bennett, U.K.M. Decking, R.S. Balaban, H. Wen, In vivo study of
microcirculation in canine myocardium using the IVIM method, Magn. Reson.
Med. 50 (2003) 531–540.

[34] J.E. Tanner, Use of the stimulated echo in NMR diffusion studies, J. Chem. Phys.
52 (1970) 2523–2526.

[35] D.H. Lee, J.I. Kim, H.K. Lee, Investigation of biochemical changes in skin layers
by NMR microscopy, Skin Res. Technol. 4 (1998) 142–146.

[36] K.M. Hasan, D.L. Parker, A.L. Alexander, Comparison of gradient encoding
schemes for diffusion-tensor MRI, J. Magn. Reson. Imaging 13 (2001) 769–780.

[37] D.K. Jones, M.A. Horsfield, A. Simmons, Optimal strategies for measuring
diffusion in anisotropic systems by magnetic resonance imaging, Magn. Reson.
Med. 42 (1999) 515–525.

[38] D.C. Alexander, A general framework for experiment design in diffusion MRI
and its application in measuring direct tissue-microstructure features, Magn.
Reson. Med. 60 (2008) 439–448.

[39] O. Brihuega-Moreno, F.P. Heese, L.D. Hall, Optimization of diffusion
measurements using Cramer-Rao lower bound theory and its application to
articular cartilage, Magn. Reson. Med. 50 (2003) 1069–1076.

[40] A.F. Emery, A.V. Nenarokomov, Optimal experiment design, Meas. Sci. Technol.
9 (1998) 864–876.

[41] R. Nagamune, J. Choi, Parameter reduction of nonlinear least-squares
estimates via singular value decomposition, in: Proc. 17th Int. Fed. Autom.
Control (IFAC) World Congress, 2008.

[42] M. Cercignani, D.C. Alexander, Optimal acquisition schemes for in vivo
quantitative magnetization transfer MRI, Magn. Reson. Med. 56 (2006) 803–
810.

[43] H. Gudbjartsson, S. Patz, The Rician distribution of noisy MRI data, Magn.
Reson. Med. 34 (1995) 910–914.

[44] A.H. Andersen, H. Gudbjartsson, S. Patz, On the Rician distribution of noisy MRI
data, Magn. Reson. Med. 36 (1996) 331–333.

[45] K.M. Jansons, D.C. Alexander, Persistent angular structure: new insights from
diffusion magnetic resonance imaging data, Inverse Probl. 19 (2003) 1031–
1046.

[46] J.C. Parker, M.T. van Genuchten, Flux-averaged and volume-averaged
concentrations in continuum approaches to solute transport, Water Resour.
Res. 20 (1984) 866–872.

[47] M.H.G. Amin, S.J. Gibbs, R.J. Chorley, K.S. Richards, T.A. Carpenter, L.D. Hall,
Study of flow and hydrodynamics dispersion in a porous medium using pulsed
field gradient magnetic resonance, Proc. R. Soc. London, A 453 (1997) 489–513.

[48] A. Chaudhuri, M. Sekhar, Analytical solutions for macrodispersion in a 3 D
heterogeneous porous medium with random hydraulic conductivity and
dispersivity, Transp. Porous Med. 58 (2005) 217–241.

[49] N.G. Papadakis, D. Xing, C.L.H. Huang, L.D. Hall, T.A. Carpenter, A comparative
study of acquisition schemes for diffusion tensor imaging using mri, J. Magn.
Reson. 137 (1999) 67–82.

[50] D.R. Brillinger, Time Series: Data Analysis and Theory, SIAM, 2001.
[51] L. Ljung, Some results on identifying linear systems using frequency domain,

in: Proc. 32nd Conf. Decision and Control, San Antonio, TX, 1993.
[52] C.-F. Wu, Asymptotic theory of nonlinear least squares estimation, Ann. Stat. 9

(1981) 501–513.
[53] S.P. Asprey, S. Macchietto, Designing robust optimal dynamic experiments, J.

Proc. Cont. 12 (2002) 545–556.
[54] F. Pukelsheim, Optimal Design of Experiments, Wiley, New York, NY, 1993.
[55] T.L. Vincent, B.S. Goh, K.L. Teo, Trajectory-following algorithms for min–max

optimization problems, J. Optimiz. Theory Appl. 75 (1992) 501–519.
[56] D. Marquardt, An algorithm for least-squares estimation of nonlinear

paramters, SIAM J. Appl. Math. 11 (1963) 431–441.
[57] J.L.R. Andersson, Maximum a posteriori estimation of diffusion tensor

parameters using a Rician noise model: why, how and but, NeuroImage 42
(2008) 1340–1356.

[58] L.G. Raguin, S. Majumdar, S. Udpa, Design of optimal experimental parameters
for diffusion-weighted MRI fibre-tracking protocols, Int. J. Appl. Electrom.
Mech. 28 (2008) 61–67.


	Robust optimal design of diffusion-weighted magnetic resonance experiments  for skin microcirculation
	Introduction
	Methods
	DWMR model for skin microcirculation
	Experimental design
	Experimental design optimization
	Robust experimental design optimization

	Results
	Performance of our D- and A-optimal experimental protocols
	Performance of our robust D-optimal and A-optimal sampling protocols
	Discussion

	Conclusions
	References


